haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

2013中考全国100份试卷分类汇编:等边三角形 2

发布时间:2013-09-17 20:33:06  

2013中考全国100份试卷分类汇编

等边三角形

1、(2013凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )

A.14 B.15 C.16 D.17

2、(2013?自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )

3、(2013?雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有( )个.

4、(2013?十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为( )

5、(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②

形;④当∠ABC=45°时,BN=PC.其中正确的个数是( )

;③△PMN为等边三角

6、(2013?遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为( )

7、(2013台湾、23)附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )

A.2

B.3 C.12﹣4 D.6﹣6

8、(2013菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是

之间的任意两个实数) (写出1个即可).

9、(2013?铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6 .

10、(2013?宜昌)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.

(1)请你判断所画四边形的性状,并说明理由;

(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.

11、(2013?天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 7 .

12、(2013聊城)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为 .

13、(2013? 德州)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:

①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+

其中正确的序号是 ①②④ (把你认为正确的都填上).

14、(2013?黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=

15、(2013?黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.

16、(2013年广东湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,?,,顶点依次用

A1、A2、A3、A4、?表示,其中A1A2与x轴、底边A1A2与

A4A5、A4A5与A7A8、?均相距一个单位,则顶点A3的

坐标是 ,A92的坐标是

17、(2013福省福州19)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.

(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是 度;

(2)连结AD,交OC于点E,求∠AEO的度数.

18、(2013?湖州)如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.

(1)求BC的长;

(2)求证:PB是⊙O的切线.

19、(2013?莱芜)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.

(1)证明DE∥CB;

(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.

20、(2013?衢州)【提出问题】

(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.

【类比探究】

(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

【拓展延伸】

(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com