haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

2013中考全国100份试卷分类汇编:操作与探究 2

发布时间:2013-09-17 21:08:50  

2013中考全国100份试卷分类汇编

操作与探究

1、(13年北京5分22)阅读下面材料:

小明遇到这样一个问题:如图1,在边长为a(a?2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积。

小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)

请回答:

(1)若将上述四个等腰直角三角形拼成一个新的正方形(无

缝隙,不重叠),则这个新的正方形的边长为

__________;

(2)求正方形MNPQ的面积。

参考小明思考问题的方法,解决问题:

如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若S?RPQ?

3,则AD的长为__________。 3

2、(2013成都市)如图,A,B,C,为⊙O上相邻的三个n等分点,弧AB?BC,点E在弧BC上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A'重合,连接EB',EC,EA'.设EB'?b,EC?c,EA'?p.先探究b,c,p三者的数量关系:发现当n?3时, p?b?c.请继续探究b,c,p三者的数量关系:

当n?4时,p?_______;当n?12时,p?_______.

(参考数据:sin15o?cos75o?

cos15o?sin75o?

3、(2013山西,21,8分)(本题8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。

(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。

①作∠DAC的平分线AM。②连接BE并延长交AM于点F。

4、(13年山东青岛、23)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式

这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。

第23题图① 第23题图②

【研究速算】

提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?

几何建模:

用矩形的面积表示两个正数的乘积,以47×43为例: (1)画长为47,宽为43的矩形,如图③,将这个47×43的

矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。

(2)分析:原矩形面积可以有两种不同的表达方式,47×43

的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形

面积之和,即47×43=(40+10)×40+3×7=5×4×100+

3×7=2021

用文字表述47×43的速算方法是:十位数字4加1的和与4

再乘以100,加上个位数字3与7的积,构成运算结果 第23题图③ 归纳提炼:

两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) _____________________________________________________________________________ _____________________________________________________________________________ 【研究方程】

提出问题:怎么图解一元二次方程x?2x?35?0(x?0)?

几何建模:

(1)变形:x(x?2)?35

(2)画四个长为x?2,宽为x的矩形,构造图④

2

(3)分析:图中的大正方形面积可以有两种不同的表达方式,

(x宽x的矩形之和,加上中间边长为2的小正方形面积

即: (x?x?2)?4x(x?2)?2

∵ x(x?2)?35

∴ (x?x?2)?4?35?2 2222第23题图④

∴ (2x?2)?144

∵ x?0

∴ x?5

归纳提炼:求关于x的一元二次方程x(x?b)?c(x?0,b?0.c?0)的解

要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)

【研究不等关系】

提出问题:怎么运用矩形面积表示(y?2)(y?3)与2y?5的大小关系(其中y?0)? 几何建模:

(1)画长y?3,宽y?2的矩形,按图⑤方式分割

(2)变形:2y?5?(y?2)?(y?3) (3)分析:图⑤中大矩形的面积可以表示为 2

(y?2)(y?3);阴影部分面积可以表示为(y?3)?1,

画点部分的面积可表示为y?2,由图形的部分与整体

的关系可知:(y?2)(y?3)>(y?2)?(y?3),即 (y?2)(y?3)>2y?5

归纳提炼:

当a?2,b?2时,表示ab与a?b的大小关系 第23题图⑤

根据题意,设a?2?m,b?2?n(m?0,n?0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)

5、(2013年江西省)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

●操作发现:

在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三

角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是

①AF=AG=1AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB. 2

●数学思考:

在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如..

图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;

●类比探索:

在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.

答:.

6、(2013山西,25,13分)(本题13分)数学活动——求重叠部分的面积。 问题情境:数学活动课上,老师出示了一个问题:

如图,将两块全等的直角三角形纸片△ABC和△DEFF

叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,

AC=FE=8,顶点D与边AB的中点重合,DE经过点C,

DF交AC于点G。

求重叠部分(△DCG)的面积。

(1)独立思考:请解答老师提出的问题。

(2)合作交流:“希望”小组受此问题的启发,

将△DEF绕点D旋转,使DE⊥AB交AC于点

H,DF交AC于点G,如图(2),你能求出重叠

部分(△DGH)的面积吗?请写出解答过程。 ADEF21C 3A D

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN求重叠部分(△DMN)的面积、

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

25题(3))

F

AN(25题(4)) DF

E

A

D

7、(2013达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

FF

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接

EF,则EF=BE+DF,试说明理由。

(1)思路梳理

∵AB=CD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。

∵∠ADC=∠B=90°,

∴∠FDG=180°,点F、D、G共线。

根据________,易证△AFG≌______,得EF=BE+DF。

(2)类比引申

如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系____时,仍有EF=BE+DF。

(3)联想拓展

如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

8、(2013陕西压轴题)问题探究

(1)请在图①中作出两条直线,使它们将圆面四等分;

(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由. 问题解决

(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b?a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.

图① 图②

图③

(第25题图)

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com