haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 学科竞赛学科竞赛

初中数学竞赛辅导资料(45)

发布时间:2013-12-30 09:46:51  

初中数学辅导资料(45)

一元二次方程的根

甲内容提要

1. 一元二次方程ax2+bx+c=0(a≠0)的实数根,是由它的系数a, b, c的值确定的.

-b?b2?4ac根公式是:x=. (b2-4ac≥0) 2a

2. 根的判别式

① 实系数方程ax2+bx+c=0(a≠0)有实数根的充分必要条件是:

b2-4ac≥0.

② 有理系数方程ax2+bx+c=0(a≠0)有有理数根的判定是:

b2-4ac是完全平方式?方程有有理数根.

③整系数方程x2+px+q=0有两个整数根?p2-4q是整数的平方数.

3. 设x1, x2 是ax2+bx+c=0的两个实数根,那么

① ax12+bx1+c=0 (a≠0,b2-4ac≥0), ax22+bx2+c=0 (a≠0, b2-4ac≥0);

-b+b2?4ac-b2?4ac② x1=, x2= (a≠0, b2-4ac≥0); 2a2a

③ 韦达定理:x1+x2= -bc (a≠0, b2-4ac≥0). , x1x2=aa

4. 方程整数根的其他条件

整系数方程ax2+bx+c=0 (a≠0)有一个整数根x1的必要条件是:x1是c的因数.

特殊的例子有:

C=0?x1=0 , a+b+c=0?x1=1 , a-b+c=0?x1=-1.

乙例题

例1. 已知:a, b, c是实数,且a=b+c+1.

求证:两个方程x2+x+b=0与x2+ax+c=0中,至少有一个方程有两个不相等的实数根.

证明 (用反证法)

设 两个方程都没有两个不相等的实数根,

那么△1≤0和△2≤0.

?1-4b?0   ①?即?a2?4c?0  ②

?a?b?c?1  ③?

15由①得b ≥,b+1 ≥代入③,得 44

5a-c=b+1≥, 4c≤4a-5 ④ 4

②+④:a2-4a+5≤0,

即(a-2)2+1≤0,这是不能成立的.

既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.

∴方程x2+x+b=0与x2+ax+c=0中,至少有一个方程有两个不相等的实数根.

159

本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.

例2. 已知首项系数不相等的两个方程:

(a-1)x2-(a2+2)x+(a2+2a)=0和 (b-1)x2-(b2+2)x+(b2+2b)=0 (其中a,b为正整数)

有一个公共根. 求a, b的值.

解:用因式分解法求得:

方程①的两个根是 a和a?2b?2; 方程②两根是b和. a?1b?1

由已知a>1, b>1且a≠b.

∴公共根是a=b?2a?2 或b=. b?1a?1

两个等式去分母后的结果是一样的.

即ab-a=b+2, ab-a-b+1=3, (a-1)(b-1)=3.

?a-1=1?a-1=3 ∵a,b都是正整数, ∴ ?; 或?. b?1?3b?1?1??

解得?

又解: 设公共根为x0那么

222??(a?1)x0?(a?2)x?(a?2a)?0 ① 先消去二次项: ?222?(?b?1)x0?(b?2)x?(b?2b)?0 ②?a=2?a?4; 或?. ?b?4?b?2

①×(b-1)-②×(a-1) 得

[-(a2+2)(b-1)+(b2+2)(a-1)]x0+(a2+2a)(b-1)-(b2+2b)(a-1)=0.

整理得 (a-b)(ab-a-b-2)(x0-1)=0.

∵a≠b

∴x0=1; 或 (ab-a-b-2)=0.

当x0=1时,由方程①得 a=1,

∴a-1=0,

∴方程①不是二次方程.

∴x0不是公共根.

当(ab-a-b-2)=0时, 得(a-1)(b-1)=3 ……解法同上.

例3. 已知:m, n 是不相等的实数,方程x2+mx+n=0的两根差与方程y2+ny+m=0的两根

差相等.

求:m+n 的值.

解:方程①两根差是

x1?x2=x1?x2)2=(x1?x2)2?4x1x2=m2?4n

同理方程②两根差是

y1?y2=n2?4m 依题意,得m?4n=n?4m. 22

160

两边平方得:m2-4n=n2-4m.

∴(m-n)(m+n+4)=0

∵m≠n,

∴ m+n+4=0, m+n=-4.

例4. 若a, b, c都是奇数,则二次方程ax2+bx+c=0(a≠0)没有有理数根.

证明:设方程有一个有理数根

那么a(m(m, n 是互质的整数). nm2m)+b()+c=0, 即an2+bmn+cm2=0. nn

把m, n按奇数、偶数分类讨论,

∵m, n互质,∴不可能同为偶数.

① 当m, n同为奇数时,则an2+bmn+cm2是奇数+奇数+奇数=奇数≠0;

② 当m为奇数, n为偶数时,an2+bmn+cm2是偶数+偶数+奇数=奇数≠0;

③ 当m为偶数, n为奇数时,an2+bmn+cm2是奇数+偶数+偶数=奇数≠0.

综上所述

不论m, n取什么整数,方程a(m2m)+b()+c=0都不成立. nn

即 假设方程有一个有理数根是不成立的.

∴当a, b, c都是奇数时,方程ax2+bx+c=0(a≠0)没有有理数根.

例5. 求证:对于任意一个矩形A,总存在一个矩形B,使得矩形B与矩形A的周长比和

面积比都等于k (k≥1).

证明:设矩形A的长为a, 宽为b,矩形B的长为c, 宽为d.

根据题意,得 c?dcd??k. a?bab

∴c+d=(a+b)k, cd=abk.

由韦达定理的逆定理,得

c, d 是方程z2-(a+b)kz+abk=0 的两个根.

△ =[-(a+b)k]2-4abk

=(a2+2ab+b2)k2-4abk

=k[(a2+2ab+b2)k-4ab]

∵k≥1,a2+b2≥2ab,

∴a2+2ab+b2≥4ab,(a2+2ab+b2)k≥4ab.

∴△≥0.

∴一定有c, d值满足题设的条件.

即总存在一个矩形B,使得矩形B与矩形A的周长比和面积比都等于k (k≥1). 例6. k取什么整数值时,下列方程有两个整数解?

①(k2-1)x2-6(3k-1)x+72=0 ; ②kx2+(k2-2)x-(k+2)=0.

解:①用因式分解法求得两个根是:x1=126, x2=. k?1k-1

由x1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.

由x2是整数,得k-1=±1, ±2, ±3, ±6.

它们的公共解是:得k=0, 2, -2, 3, -5.

答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.

②根据韦达定理

161

?k2?22x?x????k?2??1kk ??xx??k?2??k?2

12?kk?

∵x1, x2, k 都是整数,

∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.

答:当k取2和-2时,方程②有两个整数解.

丙练习45

1. 写出下列方程的整数解:

① 5x2-3x=0的一个整数根是___.

② 3x2+(2-3)x -2=0的一个整数根是___.

③ x2+(+1)x+=0的一个整数根是___.

2. 方程(1-m)x2-x-1=0 有两个不相等的实数根,那么整数m的最大值是____.

3. 已知方程x2-(2m-1)x-4m+2=0 的两个实数根的平方和等于5,则m=___.

4. 若x ≠y ,且满足等式x2+2x-5=0 和y2+2y-5=0. 那么11?=___.(提示:x, y是方程z2+5z-5=0 的两个根.) xy

5. 如果方程x2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q应满足的关系

是:___________. 若方程ax2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.

6. 如果方程mx2-2(m+2)x+m+5=0 没有实数根,那么方程(m-5)x2-2mx+m=0实数根

的个数是( ).

(A)2 (B)1 ( C)0 (D)不能确定

7. 当a, b为何值时,方程x2+2(1+a)x+(3a2+4ab+4b2+2)=0 有实数根?

9. 两个方程x2+kx-1=0和x2-x-k=0有一个相同的实数根,则这个根是( )

(A)2 (B)-2 (C)1 (D)-1

10. 已知:方程x2+ax+b=0与x2+bx+a=0仅有一个公共根,那么a, b应满足的关系是:

___________.

11. 已知:方程x2+bx+1=0与x2-x-b=0有一个公共根为m,求:m,b的值.

12. 已知:方程x2+ax+b=0的两个实数根各加上1,就是方程x2-a2x+ab=0的两个实数根.

试求a, b的值或取值范围.

13. 已知:方程ax2+bx+c=0(a≠0)的两根和等于s1,两根的平方和等于s2, 两根的立方和等

于s3.

求证:as3+bs2+cs1=0.

14. 求证:方程x2-2(m+1)x+2(m-1)=0 的两个实数根,不能同时为负.

(可用反证法)

15. 已知:a, b是方程x2+mx+p=0的两个实数根;c, d是方程x2+nx+q=0

162

的两个实数根.

求证:(a-c)(b-c)(a-d)(b-d)=(p-q)2.

16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:

__________.

17. 如果方程(x-1)(x2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m

的取值范围是 ( )

(A) 0≤m≤1 (B)m≥333 (C)<m≤1 (D)≤m≤1 444

18. 方程7x2-(k+13)x+k2-k-2=0 (k是整数)的两个实数根为α,β且0<α<1,

1<β<2,那么k的取值范围是( )

(A)3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D)无解

163

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com