haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

乘法原理B答案

发布时间:2013-12-31 11:38:55  

数 学 奥 林 匹 克 模 拟 试 卷(答案)

第[1]道题答案:

60.

先写I,有5种方法;再写M,有4种方法;最后写O,有3种方法.一共有5×4×3=60(种)方法.

第[2]道题答案:

483840.

先排首位,有8种方法.再依次排后面六位,依次有9,8,7,6,5,4种方法.故一共有8×9×8×7×6×5×4=483840(个)数字不同的电话号码.

第[3]道题答案:

72.

先排黑子,它可以放在任一格,有12种放法.再排白子,它与黑子不能在同一行,也不能在同一列,只有6种方法.一共有12×6=72(种)放法.

第[4]道题答案:

12.

先选入口,有2种方法,再选出口,有6种方法,一共有12种方法.

第[5]道题答案:

24.

第一封信有4种投法,第二封信有3种投法,第三封信有2种投法,共有4×3×2=24(种)投法.

第[6]道题答案:

10.

每一人要握4次手,五人共握4×5=20(次),但在上述计算中,每次握手都被计算了2次,故实际上握手次数为20÷2=10(次).

第[7]道题答案:

18.

先排百位,有3种方法(0不能在首位);再排十位,也有3种方法;最后排个位,有2种方法,一共有3×3×2=18(种)方法.即可以组成18个不同的三位数.

第[8]道题答案:

56.

选第一个顶点,有8种方法;选第二个顶点,有7种方法;选第三个顶点,有6种方法.共有8×7×6(种)选法.但在上述计算中,每个三角形都被计算了6次,故实际上有(8×7×6)÷6=56(个)三角形.

第[9]道题答案:

6,3.

排百位、十位、个位依次有3种、2种、1种方法,故一共有3×2×1=6(种)方法,即可以组成6个不同三位数.它们依次为123,132,213,231,312,321.故213是第3个数.

第[10]道题答案:

12.

三个人住四个房间,一共有4×3×2=24种不同住法.其中三人挨着的有(3×2×1)×2=12(种),故符合题意的住法有24-12=12(种).

第[11]道题答案:

如果16人都互相握手应握

8?7

2?2816?152?120(次).其中应减去女宾间的握手次数(次),还应减去夫妻间的握手次数8次,即共握手120-28-8=84(次)

20?19

2第[12]道题答案: 20名运动员共要赛?190(场),每场最少打2局,故比赛局数不少于

190×2=380.而最高分为25:23,这样就会有25:23,24:22,23:21,22:20以及21:0至21:19这24种情况,故至少有?

第[13]道题答案: ?380???1?1624??局比分相同.

当首数为1时,2有4个位置可放,3有3个位置可放,其余为0,共有4×3=12个不同的数.在12个数中0,0,2,3在各个数位上都出现了3次,故12个数之和为:(1×12)×10000+(2×3+3×3)×1111=136665.

当首位为2或3时,用以上方法可求得和为253332和369999,平均数为(136665+253332+369999)÷36=21111.

第[14]道题答案:

显然第一、二位为9和1.这样一来第三位不能是1,只能是0.第五位不能是0,1,只能是2.第4位有6种排法(在3,4,5,6,7,8中选一个),第6位有5种排,故一共有6×5=30(种)排法,即全年中六个数字都不同的日期共有30天.

上一篇:方程组A答案
下一篇:操作问题B
网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com