haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

2013年华杯初赛高年级组(详解)

发布时间:2014-01-04 09:41:43  

第十八届华罗庚金杯少年数学邀请赛(高年级)试卷分析

一、选择题 (每小题 10 分,满分60分. 以下每题的四个选项中,仅有一个是正确的,请将表示正确 答案的英文字母写在每题的圆括号内.)

2013′2013n,那么m+n的值是( ). =(其中m与n为互质的自然数)2014?20142012m1. 如果

(A)1243 (B)1343 (C)4025 (D)4029

【考点】计算

【难度】☆☆

【答案】B

【分析】分母=20132+2013+2014+2012=2013 2016,约分后得

2. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水,然后他们又分别做了以下事情:

671,选B. 672

最终,( )得到的糖水最甜.

(A)甲 (B)乙 (C)丙 (D)乙和丙

【考点】应用题,溶液

【难度】☆☆

【答案】C

【分析】加入糖水后,甲含糖率不变为20%,乙共45克糖130克水,含糖率为

经比较丙含糖率最高.

4565,丙含糖率为, 185225

3. 一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因为井壁打滑,就会下滑1米,下滑

1米的时间是向上爬3米所用时间的三分之一. 8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙从井底爬到井口时所花的时间为( )分钟.

(A)22 (B)20 (C)17 (D)16

【考点】应用题,爬井问题

【难度】☆☆☆

【答案】A

【分析】每一个阶段的起始点,青蛙离井口的位置依次是12-9-10-7-8-5-6-3-4-1-2-0.其中6-3这一段是

青蛙第一次离井口3米,4-1的过程中第二次离井口3米.设下滑一米所用时间为a,则青蛙从4米爬到3米所用的时间也是a.可得到第二次离井口3米时,用的总时间为17a,即a为1分钟,青蛙1分钟移动1米,共移动了22米,故而爬到顶共需要22分钟.

4. 已知正整数A分解质因数可以写成A=2a创3b5g,其中a、b、g 是自然数. 如果A的二分之

一是完全平方数,A的三分之一是完全立方数, A的五分之一是某个自然数的五次方,那么 a+b+g 的最小值是( ).

(A)10 (B)17 (C)23 (D)31

【考点】数论,完全平方数

【难度】☆☆☆☆

【答案】D

【分析】若一个自然数是n次方数,那么他分解质因数后的每个次数就都是n的倍数.即a-1、b、g

都是2的倍数,a、b-1、g都是3的倍数,a、b、g-1都是5的倍数.所以a一定是15倍数,最小值为15;b一定是10的倍数,最小值为10;g一定为6的倍数,最小值为6,三数之和最小为31.

5. 今有甲、乙两个大小相同的正三角形,各画出了一条两边中点的连线. 如图,甲、乙位置左右对称,

但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始,甲向右水平移动,直至两个三角形重叠后再离开. 在移动过程中的每个位置,甲与乙所组成的图形中都有若干个三角形. 那么在三角

形个数最多的位置,图形中有( )个三角形.

(A)9 (B)10 (C)11 (D)

12

甲乙

【考点】几何,计数&操作

【难度】☆☆☆☆

【答案】C

【分析】由于整个图形只有三个方向的线,所以形成的三角形一定是由三个方向线各一条构成的正

三角形,显然乙的顶点超过甲的左边前三角形不到10个,超过后已经有10个三角形了,但此时乙的中位线不能与甲的两条斜边相交了,所形成的三角形最多可能有2创23+1=13个,而甲的中位线只能跟乙的两条竖线之一相交,所以交出的三角形还要少2个,即最多只能有11个.这种情况是容易构造的:当乙顶点超过甲左边且两条中位线不相交时,11个可以得到.见右图情况.

乙甲

6. 从1~11这11个整数中任意取出6个数,则下列结论正确的有( )个.

① 其中必有两个数互质;

② 其中必有一个数是其中另一个数的倍数;

③ 其中必有一个数的2倍是其中另一个数的倍数.

(A)3 (B)2 (C)1 (D)0

【考点】数论

【难度】☆☆☆☆

【答案】B

【分析】(1)将11个数分为(2,3)(4,5)(6,7)(8,9)(10,11)五组,以及1,1与任何数互质,抽到1则必有两

数互质.若没抽到1,那么必有两数处于同一组,这两数一定互质,所以第一个结论正确.(2)取6、7、8、9、10、11即可,此结论不正确.(3)用质因数构造五组数,(1,2,4,8)(3,6,9)(5,10)(7)(11)若有1组内取2个数,必有一个数的两倍是另一个数倍数,根据抽屉原理,故而结论正确.有两个正确,选B.

7. 有四个人去书店买书,每人买了4本不同的书,且每两个人恰有2本书相同,那么这4个人至少

买了_______种书.

【考点】组合,构造论证

【难度】☆☆☆☆

【答案】7

【分析】设共买了6种,那么假若第一个人买了1、2、3、4四本书,后面三个人都只能买1-4中的两

本,即必须买5和6.由每两个人只有两本书相同,这样无论第二个人在1-4中买哪两本,第三个和第四个都不能和他买的重复,产生了矛盾,故而不能共买6种.买7种是可以成立的:四个人分别买1234、4567、1267、1357即可(构造方法很多)

8. 每天,小明上学都要经过一段平路AB、一段上坡路BC 和一段下坡路 CD (如右图). 已知

AB:BC:CD = 1:2:1,并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 如果小明上学与放学回家所用的时间比是n(其中m与n是互质的自然数),那么m+n的值是

m

【考点】行程问题

【难度】☆☆☆

【答案】35

【分析】不妨设AB为12米,BC为24米,CD为12米,平路、上坡、下坡分别为3米/秒,2米/

秒,4米/秒,这样上学需要4+12+3=19秒,放学需要6+6+4=16秒,故而m+n=19+16=35.

9. 黑板上有11个1,22个2,33个3,44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦

掉的第四种数字多写2个. 例如: 某次操作擦掉1个1,1个2,1个3,那就再写上2个4. 经过若干次操作后,黑板上只剩下3个数字,而且无法继续进行操作,那么最后剩下的三个数字的乘积是 .

【考点】数论,同余

【难度】☆☆☆☆☆

【答案】12

【分析】最开始时候,四种数字的个数模三分别余2、1、0、2.不管怎么操作,两个数的数量要么同

时减1,要么一个减1一个加2,这个过程中模3的差一定不变.所以原先模3不相同的话,操作到最后也一定不相同,所以最后1、2、3的数目模3一定分别余0、1、2三个数之一,由于只剩下3个数,且4的数目一定与1的相同,可知4和1都剩下0个,根据差不变,2剩下2个,3剩下1个,乘积为12.

10. 如右图,正方形ABCD被分成了面积相同的8个三角形,如果DG = 5,那么正方形ABCD面积是

C

H

DABI

【考点】几何

【难度】☆☆☆☆☆

【答案】64

【分析】设正方形边长为8份,面积为64份.那么每个三角形面积都是8份,BI=HA=2份,IH=4份,

故而F是CI的中点,延长FG和DH相交后,设交点为J,由燕尾模型,J为DH中点.故而FGJ平行于AB,得FG长度为4份.延长FG交AD于K,DK为4份,GK为3份,由勾股定理,1份为1.故正方形ABCD面积为64.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com