haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 小学教育 > 学科竞赛学科竞赛

第6章+图习题解析(答)

发布时间:2014-01-07 14:56:33  

第六章 图习题解析1

一、选择题

1、设无向图的顶点个数为n,则该无向图最多有 条边。

A、n-1 B、n(n-1)/2 C、n(n+1)/2 D、0 E、n2

2、算法适合于求边稀疏的网的最小生成树。

A、Prim B、Kruskal

3、下面的叙述中不正确的是。

A、关键活动不按期完成就会影响整个工程的完成时间

B、任何一个关键活动提前完成,将使整个工程提前完成

C、所有关键活动都提前完成,则整个工程将提前完成

D、某些关键活动若提前完成,将使整个工程提前完成

4、采用邻接表存储的图,其深度优先遍历类似于二叉树的。

A、中序遍历 B、先序遍历 C、后序遍历 D、按层次遍历

5、采用邻接表存储的图,其广度优先遍历类似于二叉树的

A、按层次遍历 B、中序遍历 C、后序遍历 D、先序遍历

6、具有n个顶点的有向图最多有条边。

A、n B、n(n-1) C、n(n+1) D、n2

7、一个n个顶点的连通无向图,其边的个数至少为 。

A、n-1 B、n C、n+1 D、nlog2n

8、下列说法中,正确的有

A、最小生成树也是哈夫曼树

B、最小生成树唯一

C、普里姆最小生成树算法时间复杂度为O(n2)

D、克鲁斯卡尔最小生成树算法普里姆算法更适合与边稠密的网。

10、判定一个有向图是否存在回路,除了可以利用拓扑排序的方法外,还可以利用 。

A、求关键路径的方法 B、求最短路径的Dijkstra方法

C、深度优先遍历算法 D、广度优先遍历算法

11、在一个具有n个顶点的有向图中,若所有顶点的出度之和为s,则所有顶点的入度之和为 。

A、s B、s-1 C、s+1 D、n

12、在一个无向图中,若两个顶点之间的路径长度为k,则该路径上的顶点数为 。

A、k B、k+1 C、k+2 D、2k

13、一个有n个顶点的无向连通图,它所包含的连通分量个数为

A、0 B、1 C、n D、n+1

14、对于一个有向图,若一个顶点的入度为k1、出度k2,则对应邻接表中该顶点单链表中的结点数为 。

A、k1 B、k2 C、k1-k2 D、k1+k2

15、对于一个有向图,若一个顶点的入度为k1、出度k2,则对应逆邻接表中该顶点单链表中的结点数为 。

A、k1 B、k2 C、k1-k2 D、k1+k2

16、为了方便地对图状结构的数据进行存取操作,则其中数据存储结构宜采用。

A、顺序存储 B、链式存储 C、索引存储 D、散列存储

二、填空题

1、具有10个顶点的无向图,边的总数最多为 45 。

2、在有n个顶点的有向图中,每个顶点的度最大可达 2(n-1) 。

3、克鲁斯卡尔算法的时间复杂度为 O(e·log2e) ,它对稀疏图较为适合。

4、若一个连通图中每个边上的权值均不同,则得到的最小生成树是 唯一 的。

5、深度优先搜索遍历类似于树的 前序 遍历,它所用到的数据结构是 栈 ;广度优先搜索遍历类似于树的 按层次 遍历,它所用到的数据结构是 队列 。

6、一个图的邻接矩阵 表示法是唯一的,而 邻接表 表示法是不唯一的。

7、对无向图,若它有n个顶点e条边,则其邻接表中需要 2e+n 个结点。其中, 2e 个结点构成邻接表, n 个结点构成顶点表。

三、判断题

1、在n个结点的无向图中,若边数>n-1,则该图必是连通图。(错 )

2、任何AOV网拓扑排序的结果都是唯一的。(错 )

3、有回路的图不能进行拓扑排序。( 对 )

4、一个图的广度优先搜索使是唯一的。( 错 )

5、图的深度优先搜索序列和广度优先搜索序列不是唯一的。(对 )

第六章图的习题解析2

1. 填空题

⑴ 设无向图G中顶点数为n,则图G至少有( 0)条边,至多有(n(n-1)/2 )条边;若G为有向图,则至少有( 0)条边,至多有(n(n-1))条边。

⑵ 任何连通图的连通分量只有一个,即是(其自身)。

⑶ 图的存储结构主要有两种,分别是(邻接矩阵)和(邻接表)。

⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为(O(n+e))。⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是(求第j列的所有元素之和)。

⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的(出度)。

⑺ 图的深度优先遍历类似于树的(前序)遍历,它所用到的数据结构是(栈);图的广度优先遍历类似于树的(层序)遍历,它所用到的数据结构是(队列)。

⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(O(n2)),利用Kruskal算法求最小生成树的时间复杂度为(O(elog2e))。

⑼ 如果一个有向图不存在(回路),则该图的全部顶点可以排列成一个拓扑序列。

2. 选择题

⑴ 在一个无向图中,所有顶点的度数之和等于所有边数的( )倍。

A、 1/2 B、 1 C、 2 D、 4

⑵ n个顶点的强连通图至少有( )条边,其形状是( )。

A、 n B、 n+1 C 、n-1 D、 n×(n-1)

E、无回路 F、有回路 G、环状 H、 树状

⑶ 含n 个顶点的连通图中的任意一条简单路径,其长度不可能超过( )。

A 、1 B、n/2 C、n-1 D 、n

⑷ 对于一个具有n个顶点的无向图,若采用邻接矩阵存储,则该矩阵的大小是( )。

A、 n B、 (n-1)2 C 、n-1 D、 n2

⑸ 图的生成树( ),n个顶点的生成树有( )条边。

A、唯一 B、不唯一 C、唯一性不能确定 D、 n E、 n +1 F、n-1

⑹ 设无向图G=(V, E)和G' =(V', E' ),如果G' 是G的生成树,则下面的说法中错误的

是( )。

A、G' 为 G的子图 B、G' 为 G的连通分量

C、G' 为G的极小连通子图且V = V' D、G' 是G的一个无环子图

⑺ G是一个非连通无向图,共有28条边,则该图至少有( )个顶点。

A、 6 B、 7 C、8 D、 9

⑻ 最小生成树指的是( ) 。

A、由连通网所得到的边数最少的生成树

B、由连通网所得到的顶点数相对较少的生成树

C、连通网中所有生成树中权值之和为最小的生成树

D、连通网的极小连通子图

⑼ 判定一个有向图是否存在回路除了可以利用拓扑排序方法外,还可以用( )。

A、 求关键路径的方法 B、 求最短路径的方法

C、 广度优先遍历算法 D、 深度优先遍历算法

3. 判断题

⑴ 一个有向图的邻接表和逆邻接表中的结点个数一定相等。对

⑵ 用邻接矩阵存储图,所占用的存储空间大小只与图中顶点个数有关,而与图的边数无关。对

⑶ 图G的生成树是该图的一个极小连通子图。错

⑷ 无向图的邻接矩阵一定是对称的,有向图的邻接矩阵一定是不对称的。错

⑸ 对任意一个图,从某顶点出发进行一次深度优先或广度优先遍历,可访问图的所有顶点。错

⑹ 在一个有向图的拓扑序列中,若顶点a在顶点b之前,则图中必有一条弧。错

⑺ 若一个有向图的邻接矩阵中对角线以下元素均为零,则该图的拓扑序列必定存在。对

四 应用题

1. n个顶点的无向图,采用邻接表存储,回答下列问题?

⑴ 图中有多少条边?

⑵ 任意两个顶点i和j是否有边相连?

⑶ 任意一个顶点的度是多少?

解答】

⑴ 边表中的结点个数之和除以2。

⑵ 第i个边表中是否含有结点j。

⑶ 该顶点所对应的边表中所含结点个数。

2.n个顶点的无向图,采用邻接矩阵存储,回答下列问题:

⑴ 图中有多少条边?

⑵ 任意两个顶点i和j是否有边相连?

⑶ 任意一个顶点的度是多少?

【解答】

⑴ 邻接矩阵中非零元素个数的总和除以2。

⑵ 当邻接矩阵A中A[i][j]=1(或A[j][i]=1)时,表示两顶点之间有边相连。

⑶ 计算邻接矩阵上该顶点对应的行上非零元素的个数。

3. 已知一个连通图如图6-6所示,试给出图的邻接矩阵和邻接表存储示意图,若从顶点v1出发对该图进行遍历,分别给出一个按深度优先遍历和广度优先遍历的顶点序列。

解答:

邻接矩阵表示如下:

深度优先遍历序列为:v1 v2 v3 v5 v4 v6

广度优先遍历序列为:v1 v2 v4 v6 v3 v5

邻接表表示如下:

4. 图6-7所示是一个无向带权图,请分别按Prim算法和Kruskal算法求最小生成树。

【解答】按Prim算法求最小生成树的过程如下:

按Kruskal算法求最小生成树的过程如下:

5.对于图6-8所示的带权有向图,求从源点v1到其他各顶点的最短路径。

解答:

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com