haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 幼儿教育 > 幼儿读物幼儿读物

09第1、2课时无穷小与无穷大111

发布时间:2013-10-07 10:59:44  

?教材分析

一、无穷小在微积分学中的地位

极限概念是微积分理论的重要基石,极限思想贯穿于整个微积分学;无穷小

是极限的灵魂与内核。在高等数学课程中,无穷小主要起运算工具的作用,它不仅被用以计算极限,而且还被用以证明极限的性质和运算法则。因此,在微积分学中,整个极限理论就是无穷小的分析与应用的理论。

二、“无穷小的比较”在高等数学中的地位和作用

在高等数学中,“无穷小的比较”是研究极限理论和计算极限的重要工具。

其中,以等价代换原理为核心的等价无穷小理论尤为重要。略去高阶无穷小不计的等价代换原理,不仅是处理微积分问题的重要思想,而且是简化极限运算的有效方法。

三、“无穷小的比较”与教材中前后知识的联系

在高等数学与微积分教材中,“无穷小的比较”一般是以函数的极限、极限

运算法则、无穷小与无穷大的概念、以及无穷小的性质等为基础;同时,它又是微积分后继内容的理论基础和思想工具。如在极限计算中,配合使用等价代换方法与洛必达法则,可使运算简化;在判断级数收敛性时,将通项进行等价替换,也可使得运算大为简化。

第 1 页 共 7 页

江苏教育学院运河分院高等数学

?学情分析

09级理科班作为毕业班面临着就业及“5+2”专转本升学考试的双重压力。而由于前面已经学习过了数列和函数的极限,大部分学生已经能够熟练掌握常见的极限的计算方法,对于常见以0或∞为极限的函数(数列)极限问题较为熟悉,这为本课讨论“无穷小与无穷大”打下了基础。

本课将在给出无穷小的概念,与学生一起探究无穷小的性质及其无穷小阶的比较的基础上,第二节课将无穷大放手给学生自由讨论、研究,最终与学生一起研究无穷小与无穷大的关系,从而突出重点,突破难点。

第一课时

?复习引入

通过前面的学习,相信大家对极限的计算能够有一定程度的掌握。 首先我们简单的检查一下大家的学习成果: 练习:计算下列极限

(1)lim

1; (2)1

??nlimn??n2; n(3)limx?0

x; (4)limx?0

2x;

(5)limx?0

sinx; (6)limx?0

1?cos2x

1、快速口答上述极限的结果;

2、结合上述六个极限,你能发现那些规律? 通过对上述极限特点总结,给出无穷小的定义:

?新课讲授

若函数f?x?当x?a(或x??)时的极限为0,则称函数f?x?为x?a(或x??)时的无穷小量,简称无穷小。

例1 下列变量在给定的变化过程中,哪些是无穷小?

(1)y?1?cosx(x?0) (2)y?1?cosx(x??

3

(3)y?sin

1x(x??) (4)y?sin1

x

(x?1) 5)x1?(?1)n

(1?n2n?n(n??) (6)xn?n2(n??)

(7)y?2x?1(x?0) (8)y?2x

?1(x???)

注:无穷小与自变量的变化趋势有关,在叙述的时候应叙述清楚是何种变化

第 2 页 共 7 页

江苏教育学院运河分院高等数学

过程中的无穷小。

例2 结合极限的四则运算性质,思考:

(1)同一变化趋势下的任意两个无穷小的和、差、积有什么特点?能否扩展到无限多个?试举例说明。

(2)任一无穷小与有界量的积呢?

(3)同一变化趋势下的任意两个无穷小的比呢?讨论无穷小??1?n??、?

?1?

?n2??

与??1?

?n3?

的特点,观察它们的不同之处。

设f?x?与g?x?都是x?a时的无穷小,且g?x??0,记lim

f?x?x?a

gx?l。 (1)若l?0,则称当x?a时,f?x?是比g?x?高阶的无穷小,记作

f?x??o?g?x??(x?a);

(2)l?0,则称当x?a时,f?x?与g?x?是同阶无穷小;

特别地,若l?1,则称当x?a时,f?x?与g?x?是等价无穷小,记作

f?x?~g?x?(x?a)

例3 当x?0时,下列函数与x相比,哪些是高阶无穷小,哪些是同阶但不等价无穷小,哪些是等价无穷小?

sinx,tanx,2x?x2,x2?x3,1?cos2x,ex?1

例4(1)(07、10年真题)当x?0时,无穷小量x2?sinx是x的( ) A高阶无穷小 B等价无穷小 C低阶无穷小 D同阶但不等价无穷小

第 3 页 共 7 页

江苏教育学院运河分院高等数学

(2)(08年真题)当x?0时,sinx与ln?1?2x?是__________无穷小(高阶、等价、同阶).

(3)(09年真题)2、当x?1时,1?x与1?x2

相比较是( ) A高阶无穷小 B等价无穷小 C低阶无穷小 D同阶但不等价无穷小 例5 设x?0时,1?cos2x与asin

2

x

2

为等价无穷小,求a的值。 ?课堂小结

通过本节课的学习,我们在掌握了无穷小的定义的基础之上,掌握了无穷小的性质,并学会了无穷小的比较。回顾课初,我们提到的函数极限,思考:

如果把这些函数取倒数,在相同的变化趋势下极限如何呢?

稍微休息一下,下节课请同学们自行结合无穷小的讨论方法探讨极限的另外

第二课时

?新课讲授

结合下列计算极限的特点,试着说一说无穷大的定义: (1)limn; (2)limn??

n2

n??

(3)lim1; (4)1

0xlim;

x?x?02x

(5)lim1; (6)1

x?0sinxlimx?

01?cos2x

任给M?0,当x变化一定以后,总有f?x??M,则称f?x?为无穷大。 记作:lim

f?x???

试着举几个无穷大量的例子,同位之间相互验证一下。

讨论:谈一谈你对无穷小与无穷大的关系的认识。 (1)lim

1与n??nlimn??n; (2)lim1

2

n??n

2limn??n;

第 4 页 共 7 页

江苏教育学院运河分院高等数学

(3)limx与lim1

x?0; (4)x?0xlimx?02x与lim1; x?02x

(5)limx?0sinx与lim1; (6)x?0sinxlimx?01?cos2x与lim1x?01?cos2x

思考:(1)考虑常函数f?x??0;

(2)考虑函数f?x??sinx

x。

在x的同一个变化过程中,若f?x?为无穷大,则1

fx为无穷小;

若f?x?为无穷小,且f?x??0(恒不为0),则1

fx为无穷大。

注:正因为无穷小与无穷大存在了这种特殊关系,因此对无穷大的研究往往可归结为对无穷小的讨论。

?课堂小结

通过本次课的学习,相信大家对无穷小与无穷大有了更为深刻的认识,那么在我们高等数学课程中,无穷小主要起运算工具的作用,它不仅被用以计算极限,而且还通常被用以证明极限的性质和运算法则。尤其是对于无穷小的比较,在历年的专转本考试中都有所涉及,希望同学们能够予以足够的重视。

?作业布置

课堂作业:完成教材48页习题1.4 第1、2题。

课外作业:阅读课外资料,找一找无穷小在数学发展史上的重要地位和作用。 ?板书设计

1.5 无穷小与无穷大

一、无穷小的定义 例题与练习

二、无穷小的性质 略

三、无穷小的比较

四、无穷大的定义

五、无穷小与无穷

大的关系

第 5 页 共 7 页

江苏教育学院运河分院高等数学

?阅读材料

对无穷小的模糊认识与危机的产生

其实在历史上众多的数学家对无穷小也有过模糊的描述。这些描述与我们对无穷小最初的认识有些相似。古希腊的德谟克利特将“原子论”应用于数学,认为线、面和立体等分别由有限多个原子组成,计算立体的体积就等于将构成该立体的有限多个原子的体积加起来,用此方法他第一个提出了圆锥体积是等底等高圆柱体积的三分之一。可以说这是无穷小和积分思想的先声。17世纪的意大利数学家卡瓦利列在《不可分量几何》中将面和立体看成不可分量“流动”所生成,在他看来不可分量就是无穷小。

古希腊的一篇极重要的文献《阿基米德方法》中阿基米德运用穷竭法来解决二次曲线曲面的一些问题。阿基米德的穷竭法蕴涵了极限的思想,但他极力避开无穷小这一概念,以保证推理的严密性。因为他认为无穷小概念存在着说不清的矛盾。最具代表性的就是芝诺悖论。古希腊哲学家芝诺提出了阿基里斯追乌龟说来否定时空的无限可分,又提出了飞矢不动说来否定时空的有限可分。若从此时算起,无穷小是否存在困扰了数学家们2000多年。

17世纪中叶,牛顿和莱布尼茨对微积分的创立做出了决定性的贡献。但是他们都没能用一个严密的方法来定义无穷小,存在不少自己也说不清道不明的论述。牛顿在《求积法》中说:“让增量迅速消失”;莱布尼茨说“一个永远疾驰和变化的量直到消失为零”;“愿要多小就有多小的量”;“无穷小不是简单的零,而是相对的零,就是说它是消失的量,但仍保持着它那正在消失的特征。”但他又说“我不太相信度量中真正有无穷小”。我们可以看出这些描述是模糊的动态的,仅凭借直觉和经验来理解问题。但是这样模糊描述而没有精确的数学定义会使许多微积分问题无法进一步研究,甚至出现许多错误,例如莱布尼茨去讨论级数。

当时这些对无穷小的描述遭到了大量的怀疑批评甚至是指责和攻击。18世纪的英国大主教贝克莱讥讽牛顿的无穷小量是“逝去的鬼魂”(龚升,林立军,简明微积分发展史[M],长沙:湖南教育出版社,2005)。

无穷小存在吗,是什么,为什么会出现很多的矛盾或悖论?作为微积分的基础,对无穷小的理解便引发了激烈的争论,这就导致了数学史称之为的第二次数学危机。

其实从古希腊的安提丰、阿基米德等的穷竭法到17世纪意大利的卡瓦列里的不可分几何,几何方法一直是微积分研究的主要方法,甚至认为微积分与几何不可分割,只能是几何的一部分。17世纪费马等人运用算术解析方法来研究微积分,却受到广泛强烈地批评,例如沃利斯的《无限算术》被指为“卑劣的书”、“符号的疮疤”(Carl B Boyer.微积分概念发展史[M].上海:复旦大学出版社,2007)。但是将极限建立在几何直觉上是不可能将极限更一般更精确地描述出来的,也限制了解析方法的发展。

到了18世纪瑞士数学家欧拉将以函数形式来研究微积分,完全走出了几何学的禁锢,不需要把微积分问题都归为图形来研究。在19世纪柯西和魏尔斯特拉斯最终用算术运算来定义极限,极大促进了微积分的发展。经过达朗贝尔、波尔查

第 6 页 共 7 页

江苏教育学院运河分院高等数学

诺、柯西、魏尔斯特拉斯等数学家200多年的努力,直到19世纪ε-δ语言才成为严格精确定义极限和无穷小的方法。

第 7 页 共 7 页

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com