haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 中考中考

2014年中考数学二轮复习真题演练:探究型问题

发布时间:2014-04-18 13:34:30  

二轮复习真题演练

探究型问题

一、选择题

1.(2013?永州)如图,下列条件中能判定直线l1∥l2的是( )

A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180° D.∠3=∠

5

1.C

2.(2013?安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )

A.∠A=∠C B.AD=CB C.BE=DF D.AD∥

BC

2.B

3.(2013?湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )

A.BD=CE B.AD=AE C.DA=DE D.BE=CD

3.C 中国%&*教育出版网

二、填空题

4.(2013?娄底)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是 (添加一个条件即可).

4.∠B=∠C或AE=AD

5.(2013?白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为 .(答案不唯一,只需填一个)

5.AC=CD

6.(2013?上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线)

6.AC=DF

7.(2013?黑龙江)如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件: ,使得平行四边形ABCD为菱形.

7.AD=DC

8.(2013?西城区一模)在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处. 第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;

第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;

第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;

第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;

依此规律进行,点A6的坐标为 ;若点An的坐标为(2013,2012),则n= .

8.(-2-3),4023

9.(2013?湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是 ,A92的坐标是 中

9.(0

,(31,-31)

10.(2013?绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是

10.12°

三、解答题

11.(2013?茂名)如图,在?ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.

(1)求证:△ADE≌△BFE;

(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.

11.解:(1)证明:∵四边形ABCD是平行四边形,

∴AD∥BC.

又∵点F在CB的延长线上,

∴AD∥CF,

∴∠1=∠2.

∵点E是AB边的中点,

∴AE=BE.

∵在△ADE与△BFE中,

? 1? 2???DEA??AEB,

?AE?BE?

∴△ADE≌△BFE(AAS);

(2)解:CE⊥DF.理由如下:

如图,连接CE.

由(1)知,△ADE≌△BFE,

∴DE=FE,即点E是DF的中点,∠1=∠2.

∵DF平分∠ADC,

∴∠1=∠3,

∴∠3=∠2,

∴CD=CF,

∴CE⊥DF.

12.(2013?白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.

(1)BD与CD有什么数量关系,并说明理由;

(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.

12.解:(1)BD=CD.

理由如下:∵AF∥BC,

∴∠AFE=∠DCE,

∵E是AD的中点,

∴AE=DE,

??AFE??DCE?在△AEF和△DEC中,??AEF??DEC,

?AE?DE?

∴△AEF≌△DEC(AAS),

∴AF=CD,

∵AF=BD,

∴BD=CD;

(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.

理由如下:∵AF∥BD,AF=BD,

∴四边形AFBD是平行四边形,

∵AB=AC,BD=CD,

∴∠ADB=90°,

∴?AFBD是矩形.

13.(2013?无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.

(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;

(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)

13.(1)以①②作为条件构成的命题是真命题,

证明:∵AB∥CD,

∴△AOB∽△COD, ∴AOBO, ?OCOD

∵AO=OC,

∴OB=OD,

∴四边形ABCD是平行四边形.

(2)根据①③作为条件构成的命题是假命题,即如果有一组对边平行,而另一组对边相等的四边形时平行四边形,如等腰梯形符合,但不是平行四边形;

根据②③作为条件构成的命题是假命题,即如果一个四边形ABCD的对角线交于O,且OA=OC,AD=BC,那么这个四边形时平行四边形,如图,

根据已知不能推出OB=OD或AD∥BC或AB=DC,即四边形不是平行四边形.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com