haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 中考中考

2013年南京市联合体中考二模数学试题及答案

发布时间:2014-06-12 09:33:49  

数 学

一、选择题(本大题共6小题,每小题2分,共计12分,在每小题所给出的四个选项中,

恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)

1.-2的绝对值是( ▲ )

A.2 B. 2 C.-2 D.-2

2.2014年青奥会将在南京举办,大部分比赛将在总占地面积为896000平方米的“奥体中

心区”进行.将896000万用科学记数法表示,正确的是( ▲ )

A.0.896×106 B.8.96×105

C.89.6×104 D.8.96×106

3.下面四个立体图形中,俯视图是三角形的是( ▲ )

A. B. C. D.

423711的点分别标在数轴(如图)上,则其中能被墨迹覆盖

的点所表示的数是( ▲ )

A.2 B3 C.- D(第4题)

5.下列说法正确的是( ▲ )

A.国家级射击运动员射靶一次,正中靶心是必然事件

B.如果在若干次试验中一个事件发生的频率是44C.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是2D.如果车间生产的零件不合格的概率为1000,那么在检查数量足够大的前提下平均每检查1000个零件会查到1个次品

6.如图,在□ABCD中,E是对角线BD上一点,过E点的线段FG、HP分别交平行四边形四边于F、G、H、P.若要命名图中两个阴影部分面积的大小关系是唯确定的,则需要添加的条件是( ▲ )

A.∠ABC=90° B.DE∶EB=2∶3

C.FG∥BC,HP∥AB D.AB<BC

B (第6题

) P C G 111111

二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直

接填写在答题卡相应位置上) .......7.计算(ab2)3的结果是 ▲ .

x+1

8.函数y﹦x的取值范围是 ▲ .

x

9.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=30°,则∠2= ▲ .

10.如图,⊙O的直径为10,弦AB的长为8,则点O到AB的距离为

(第9题

)

(第10题

)

(第13题)

11.为了了解全校学生的视力情况,小明、小华、小李三个同学分别设计了三个方案.

①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况.

②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况.

③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况. 以上的调查方案最合适的是 ▲ (填写序号). 12.若一个圆锥的侧面积是12π,侧面展开图是圆心角为120°的扇形,则该圆锥的母线长为

▲ .

13.如图,在长度为1的线段AB上取一点P,分别以AP、BP为边作正方形,则这两个正

方形面积之和的最小值为 ▲

14.如图,矩形ABCD中,点E在边BC上,EF⊥AE交AD于点F,若AB=2,BC=8,BE=5,则FD的长度为

⌒⌒⌒⌒⌒

15.如图,点A1、A2、A3、A4、A5在⊙O上,且A1A2=A2A3=A3A4=A4A5=A5A1,B、C分别是

A1A2、A2A3上两点,A1B=A2C,A5B与A1C相交于点D,则∠A5DC.

A

FD

A

2

B

(第14题)

EC

(第15题

)

12

16.如图,A、B分别是函数y=xx>0)的图象上两点,α=β,tanα,则△AOB的边AB

2上的高为▲ .

三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)

17.(6分)计算:(–1)0+(–6)?2–1–(–2)4÷(–2)3.

1x18.(6分)计算:(1+)÷. x-1x-1

??2x+7≤ x+10,

19.(6分)解不等式组:?x+2,并把它的解集在数轴上表示出来。 2-x.??3

20.(6分)把两个可以自由转动的均匀转盘A、B分别3等份,并在各个扇形内分别标上数

字(如图).小明和小丽用这两个转盘做游戏,游戏规定,分别转动转盘A、B,转盘停止后,将两个指针所指扇形内的数字相加(若指针停在等份线上,则重转1次,直到指针指向某一扇形内),若数字之和为奇数,则小明赢,否则算小丽.赢这个游戏对双方公平吗?请说明理由.

2

1 4 3

(第20题)

21.(6分)已知:如图,在△ABC中,∠A=30°,∠B=60°.

(1)作∠B的平分线BD,交AC于点D;作AB的中点E(保留作图痕迹,不写作法);

(2)连接DE,求证:△ADE≌△BDE.

6 5 B A (第21题) C

22.(6分)如图,小刚同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在

E处测得∠AFG=45°,DF=9米,仪器高度CD=1.5米,求这棵树AB的高度(结果精确到1米,3 ≈1.7).

(第22题)

23.(7分)甲、乙两班参加学校迎“青奥”知识比赛,两班的参赛人数相等.比赛结束后,

依据两班学生成绩绘制了如下的统计图表.

甲班学生迎“青奥”知识比赛成绩扇形统计图 9分 20% 8分 35% 6分 25% 7分 20% 乙班学生迎“青奥”知识比赛成绩统计表

(1)经计算乙班学生的平均成绩为7.7分,中位数为7分,请计算甲班学生的平均成

绩、中位数,并从平均数和中位数的角度分析哪个班的成绩较好;

(2)如果学校决定要组织6个人的代表队参加市级团体赛,为了便于管理,决定依据

本次比赛成绩仅从这两个班的其中一个班中挑选参赛选手,你认为应选哪个班?请说明理由.

24.(7分)如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.

(1)求证:四边形EFCD是菱形;

(2)如果AB=8,求D、F两点间的距离.

B F C (第24题)

25.(8分)甲车以某一速度沿公路从A地匀速驶往B地,到达B地停留m小时后,立即

以原速沿原路匀速返回A地,共用11小时.甲车出发一段时间后,乙车沿同一条公路以每小时120千米的速度从A地匀速驶往B地,甲车从A地出发9小时后,两车在距离A地160千米处相遇,甲车回到A地的同时乙车到达了B地.如图所示的折线是甲车离A地的距离y1(千米)与行驶时间 x(小时)之间的函数图象.

(1)求乙车离A地的距离y2(千米)与所用时间x(小时)之间的函数关系式,并在同

一坐标系中画出其函数图象;

(2)求m的值.

y/千米 D

(第25题) 小时

26.(9分)某种产品按质量分为10个档次,生产最低档次的产品每件获利润8元,每提

高一个档次每件产品利润增加2元,最低档次的产品每天可生产60件,提高一个档次将减少3件,并且每天只生产同一档次的产品(最低档次为第1档次,档次依次随质量提高而增加).

(1)某天生产第3档次产品,则该档次每件产品的利润为 ▲ 元,总利润为 ▲ 元.

(2)如果要使一天获利润810元,则应生产哪个档次的产品?

27.(10分)在□ABCD中,AD=6,∠ABC=60°,点E在边BC上,过点E作直线EF⊥AB,垂足为点F,EF与DC的延长线相交于点H.

(1)如图1,已知点E是BC的中点,求证:以E为圆心、EF为半径的圆与直线CD相切;

(2)如图2,已知点E不是BC的中点,连接BH、CF,求梯形BHCF的面积.

A

F

BC

HDAFBHCDE

(图1) (图2)

28.(11分)阅读材料,回答问题:

如果二次函数y1的图象的顶点在二次函数y2的图象上,同时二次函数y2的图象的顶点在二次函数y1的图象上,那么我们称y1的图象与y2的图象相伴随.

例如:y=(x+1)2+2图象的顶点(–1,2)在y= –(x+3)2+6的图象上,同时y= –(x+3)2+6图象的顶点

(–3,6)也在y=(x+1)2+2的图象上,这时我们称这两个二次函数的图象相伴随.

(1)说明二次函数y=x2–2x–3的图象与二次函数y= –x2+4x–7的图象相伴随;

(2)如图,已知二次函数y1=4(x+1)2–2图象的顶点为M,点P是x轴上一个动点,将二次函数y1的图象绕点P旋转180°得到一个新的二次函数y2的图象,且旋转前后的两个函数图象相伴随,y2的图象的顶点为N。

①求二次函数y2的关系式;

②以MN为斜边作等腰直角△MNQ,问y轴上是否存在满足要求的点Q?若存在,求出Q点的坐标;若不存在,请说明理由.

(第28题) (备用图)

1

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com