haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 中考中考

2014年中考各省市数学大题压轴题精选题库

发布时间:2014-06-19 12:02:04  

2014年中考各省市数学大题压轴题精选题库

目 录

第一部分 函数图象中点的存在性问题

1.1 因动点产生的相似三角形问题

例1 2013年上海市中考第24题

例2 2012年苏州市中考第29题

例3 2012年黄冈市中考第25题

例4 2010年义乌市中考第24题

例5 2009年临沂市中考第26题

例6 2008年苏州市中考第29题

1.2 因动点产生的等腰三角形问题

例1 2013年上海市虹口区中考模拟第25题

例2 2012年扬州市中考第27题

例3 2012年临沂市中考第26题

例4 2011年湖州市中考第24题

例5 2011年盐城市中考第28题

例6 2010年南通市中考第27题

例7 2009年江西省中考第25题

1.3 因动点产生的直角三角形问题

例1 2013年山西省中考第26题

例2 2012年广州市中考第24题

例3 2012年杭州市中考第22题

例4 2011年浙江省中考第23题

例5 2010年北京市中考第24题

例6 2009年嘉兴市中考第24题

例7 2008年河南省中考第23题

1.4 因动点产生的平行四边形问题

例1 2013年上海市松江区中考模拟第24题

例2 2012年福州市中考第21题

例3 2012年烟台市中考第26题

例4 2011年上海市中考第24题

例5 2011年江西省中考第24题

例6 2010年山西省中考第26题

例7 2009年江西省中考第24题

1.5 因动点产生的梯形问题

例1 2012年上海市松江中考模拟第24题

例2 2012年衢州市中考第24题

例4 2011年义乌市中考第24题

例5 2010年杭州市中考第24题

例7 2009年广州市中考第25题

1.6 因动点产生的面积问题

例1 2013年苏州市中考第29题

例2 2012年菏泽市中考第21题

例3 2012年河南省中考第23题

例4 2011年南通市中考第28题

例5 2010年广州市中考第25题

例6 2010年扬州市中考第28题

例7 2009年兰州市中考第29题

1.7 因动点产生的相切问题

例1 2013年上海市杨浦区中考模拟第25题 例2 2012年河北省中考第25题

例3 2012年无锡市中考第28题

1.8 因动点产生的线段和差问题

例1 2013年天津市中考第25题

例2 2012年滨州市中考第24题

例3 2012年山西省中考第26题

第二部分 图形运动中的函数关系问题

2.1 由比例线段产生的函数关系问题 例1 2013年宁波市中考第26题

例2 2012年上海市徐汇区中考模拟第25题 例3 2012年连云港市中考第26题

例4 2010年上海市中考第25题

2.2 由面积公式产生的函数关系问题 例1 2013年菏泽市中考第21题

例2 2012年广东省中考第22题

例3 2012年河北省中考第26题

例4 2011年淮安市中考第28题

例5 2011年山西省中考第26题

例6 2011年重庆市中考第26题

第三部分图形运动中的计算说理问题

3.1 代数计算及通过代数计算进行说理问题 例1 2013年南京市中考第26题

例2 2013年南昌市中考第25题

3.2几何证明及通过几何计算进行说理问题

例1 2013年上海市黄浦区中考模拟第24题 例2 2013年江西省中考第24题

第一部分

函数图象中点的存在性问题

1.1 因动点产生的相似三角形问题

例1 2013年上海市中考第24题

如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.

(1)求这条抛物线的表达式;

(2)连结OM,求∠AOM的大小;

(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

图1

动感体验

请打开几何画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.

请打开超级画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.点击按钮的左部和中部,可到达相似的准确位置。

思路点拨

1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.

2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠ABC=∠AOM.

3.根据夹角相等对应边成比例,分两种情况讨论△ABC与△AOM相似.

满分解答

(1)如图2,过点A作AH⊥y轴,垂足为H.

在Rt△AOH中,AO=2,∠AOH=30°,

所以AH=1,OHA(?1.

因为抛物线与x轴交于O、B(2,0)两点,

设y=ax(x-2),代入点A(?1,可得

. 图2 3

2所以抛物线的表达式为y?x(x?2)?. 2(2)由y? x?x?1)2得抛物线的顶点M的坐标为(1,. .所以tan?BOM?a?

所以∠BOM=30°.所以∠AOM=150°.

, 得tan?ABO,AB?OM?.

(3)由A(?1、B(2,0)、M(1,

所以∠ABO=30

°,OA? OM

因此当点C在点B右侧时,∠ABC=∠AOM=150°.

△ABC与△AOM相似,存在两种情况:

BAOA??

时,BC???2.此时C(4,0). BCOMBCOA②如图4

,当??

时,BC???6.此时C(8,0).

BAOM①如图3

,当

图3 图4

考点伸展

在本题情境下,如果△ABC与△BOM相似,求点C的坐标.

如图5,因为△BOM是30°底角的等腰三角形,∠ABO=30°,因此△ABC也是底角为30°的等腰三角形,AB=AC,根据对称性,点C的坐标为(-4,0).

图5

例2 2012年苏州市中考第29题

121bx?(b?1)x?(b是实数且b>2)与x轴的正半轴分别交444

于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.

(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);

(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

如图1,已知抛物线y?

图1

动感体验

请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.

思路点拨

1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.

2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.

3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.

满分解答

b). 4

(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC. 因此PD=PE.设点P的坐标为(x, x).

如图3,联结OP.

1b15所以S四边形PCOB=S△PCO+S△PBO=??x??b?x?bx=2b. 2428

161616解得x?.所以点P的坐标为(,).

555(1)B的坐标为(b, 0),点C的坐标为(0,

图2 图3

11b1(3)由y?x2?(b?1)x??(x?1)(x?b),得A(1, 0),OA=1. 4444

①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com