haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 中考中考

2012年中考数学压轴题70题精选(含答案)

发布时间:2014-06-19 12:02:13  

2012年中考数学压轴题70题精选(含答案)

【001

】如图,已知抛物线y?a(x?1)2?a≠0)经过点A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.

(1)求该抛物线的解析式;

(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?

(3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

【002】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD

向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?

②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值。

1

【003】如图13,二次函数y?x2?px?q(p?0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公

共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,

求出点D的坐标;若不存在,请说明理由。

【004】一次函数y?ax?b的图象分别与x轴、y轴交于点5。 4

M,N,与反比例函数y?k的图象相交于点A,B.过点A分别作AC?x轴,AE?yx

AC轴,垂足分别为C,E;过点B分别作BF?x轴,BD?y轴,垂足分别为F,D,

与BD交于点K,连接CD.

(1)若点A,B在反比例函数y?

①S四边形AEDK?S四边形CFBK;

2 k的图象的同一分支上,如图1,试证明: x

②AN?BM.

(2)若点A,B分别在反比例函数y?

还相等吗?试证明你的结论.

k的图象的不同分支上,如图2,则AN与BMx) 【005】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.

(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

3

【006】如图,抛物线y?ax2?bx?3与x轴交于A,B两点,与y轴交于C点,且经过

?3a),对称轴是直线x?1,顶点是M. 点(2,

(1)求抛物线对应的函数表达式;

(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以

,C,N为顶点的四边形为平行四边形?若存在,点P,A请求出点P的坐标;若不存在,请说明理由;

(3)设直线y??x?3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),

,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由; 经过A

(4)当E是直线y??x?3上任意一点时,(3)中的结论是否成立?(请直接写出结论).

4

(第26题

【007】如图9,已知正比例函数和反比例函数的图象都经过点A(3,3).

(1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;

(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1?

若不存在,请说明理由.

2S?若存在,求点E的坐标; 3

【008】如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y?ax2?bx?c与y轴交于点D,与直线y?x交于点M、N,且MA、NC分别与圆O相切于点A和点C.

(1)求抛物线的解析式;

(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长.

(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.

5

【009】如图,抛物线经过A(4,,0)B(1,,0)C(0,?2)三点. (1)求出抛物线的解析式;

(2)P是抛物线上一动点,过P作PM?x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

,0)、C(0,4)两点,与x轴交于另一点【010】如图,抛物线y?ax2?bx?4a经过A(?1B.

(1)求抛物线的解析式;

(2)已知点D(m,m?1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;

(3)在(2)的条件下,连接BD,点P为抛物线上一点, 且?DBP?45°,求点P的坐标.

6

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com