haihongyuan.com
海量文库 文档专家
全站搜索:
您现在的位置:首页 > 初中教育 > 中考中考

2014大连中考数学试题

发布时间:2014-07-02 15:05:16  

2014大连中考数学试题

注意事项:

1.请在答题卡上作答,在试卷上作答无效。

2.本试卷共五大题,26小题,满分150分。考试时间120分钟。

一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)

1. 3的相反数是 ( )

11 A. 3 B.-3 C. D.- 33

2. 如图所示的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是

3. 《2013年大连市海洋环境状况公报》显示,2013年大连市管辖海域总面积为29000平方公里,29000用科学记数法表示为 ( )

A. 2.9×10 3 B.2.9×10 4 C.29×10 3 D.0.29×10 5

( )

A.(1,3) B.(2,2) C.(2,4) D.(3,3)

5. 下列计算正确的是 ( )

A.a+a2=a3 B.(3a)2=6a2 C.a6÷a2=a3 D.a2?a3=a5

6. 不等式组

x-2> 1,的解集是 ( )

3x+4>x

A.x>-2 B.x<-2 C.x>3 D.x<3

7. 甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球

( )

A. 1115 B. C. D. 6326 4. 在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是 除颜色外都相同。从两个口袋中各随机取一个球,取出的两个球都是红的概率为

8. 一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为

A.12πcm2 B.15πcm2 C.20πcm2 D.30πcm2

二、填空题(本题共8小题,每小题3分,共24分)

9. 分解因式:x2-4=。

10. 函数y=(x-1)2+3的最小值为 。

11. 当a=9时,代数式a2+2a+1的值为 。

12. 如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE=cm。

13. 如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO= °.

B

12题

14. 如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为 m(精确到1m)。(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)

则该校女子排球队队员的平均年龄为 岁。

16. 点A(x1,y1)、B(x2,y2)分别在双曲线y=-1/x的两支上,若y1+y2>0,则x1+x2的范围是 。

三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)

17. 计算:3(1-)++(1/3)-1.

3X 18. 解方程: = +1 X?12X?2

19. 如图:点

A、

B

、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF. 求证:AE=BF.

.

20. 某地为了解气温变化情况,对某月中午12时的气温(单位:℃)进行了统计。以下是根据有关数据制作的统计图表的一部分.

根据以上信息解答下列问题:

(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为 天,占这个月总天数的百分比为 %,这个月共有 天;

(2)统计表中的a= ,这个月中行12时的气温在 范围内的天数最多;

(3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.

四、 解答题(本题共3小题,其中21、22题各9分,

23题10分,共28分)

21. 某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件。假设2013年到2015年这种产品产量的年增长率相同.

(1) 求2013年到2015年这种产品产量的年增长率;

(2) 2014年这种产品的产量应达到多少万件?

22. 小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地. 小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如

图所示.

(1)图中a= ,b= ;

(2)求小明的爸爸下山所用的时间.

22题

23. 如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.

(1)图中∠OCD= °,理由是 ;

(2)⊙O的半径为3,AC=4,求CD的长.

23

五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)

24. 如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为B′.点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′.设直线l与AB相交于点E、与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y.

(1)求证:∠BEF=∠AB′B;

(2)求y与x的函数关系式,并直接写出x的取值范围.

25. 如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F

是DE与AC的交点,且DF=FE.

(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;

(2)求证:BE=EC;

(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).

DA

1 B

26. 如图,抛物线y=a(x-m)2+2m-2(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m-1).连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC。点C关于直线l的对称点为C′,连接PC′,即有PC′=PC.将△PBC绕点P逆时针旋转,使点C与点C′重合,得到△PB′C′.

(1)该抛物线的解析式为

(用含m的式子表示);

(2)求证:BC∥y轴;

(3)若点B′恰好落在线段BC′上,求此时

m的值.

网站首页网站地图 站长统计
All rights reserved Powered by 海文库
copyright ©right 2010-2011。
文档资料库内容来自网络,如有侵犯请联系客服。zhit326@126.com